

September 19-20, 2007 · Hilton Rockville, Rockville MD

Renewable Electricity – Solar Energy Conversion

September 20, 2007

Second Plenary

September 19-20, 2007 · Hilton Rockville, Rockville MD

Panel Members

- Sam Baldwin
- Victor Batista
- Miroslav Begovic
- Jerry Bernholc
- •Rana Biswas
- Gang Chen
- Lori Diachin
- Phillip Duxbury
- James Evans
- George Fann
- Al Geist
- Peter Graf

- •Kai-Ming Ho
- Roy Hogan
- Mark Hybertsen
- Gary Johnson
- Yosuke Kanai
- Efthimios Kaxiras
- Shawn Lin
- Dmitry Matyushov
- Jeffrey Mazer
- James Misewich
- Jayathi Murthy
- Jeffrey Neaton

- Ruth Pachter
- Roger Pawlowski
- Mark Pederson
- Joerg Petrasch
- Angus Rockett
- Andy Salinger
- Andrew Shabaev
- •G. Malcolm Stocks
- Dallas Trinkle
- Lin-Wang Wang
- Shengbai Zhang
- Yong Zhang

September 19-20, 2007 · Hilton Rockville, Rockville MD

Priority Research Directions

- Defects, grain boundaries & alloys of inorganic semiconductors.
- Polymeric & small molecule organics; nanostructured composites (nano-organics mixes)
- Complex, hybrid materials systems (thermoelectrics, interfaces, biomimetic systems)
- Component simulation methods: Integration of physics based models to simulate & optimize light management, carrier generation & carrier transport to predict performance of multicomponent photovoltaic systems
- Process simulation methods: Efficient, robust computational techniques for atomistic to continuum, multi-time scale, multiphysics simulation of materials processing and assembly for solar energy applications.

September 19-20, 2007 · Hilton Rockville, Rockville MD

Materials Optimization in Inorganic PV

Challenges

- * Current inorganic PV are either cheap or efficient, but not both
- * Defects are often the limiting factor (recombination at defect sites or grain boundaries, decreased mobility, material instabilities)

Needs from Computational Science

- Methods for accurate determination of gap and defect levels, many-body effects
- Structure determination of large systems reduced scaling methods
- Better local (electronic structure) and global (atomic structure) minimization methods
- Petascale parallelization & load optimization

Summary of Research Direction

- * Computational predictions of defect thermodynamics, stability, diffusion, energy levels, generation mechanisms
- * Doping efficiency vs recombination
- Band gap engineering alloying
- Transport, interfaces & grain boundaries

Potential Impact on Solar Energy

- High efficiency (close to thermodynamic limit), cheap (defect-tolerant) solar cells
- Feed forward to device simulation and pilot projects: comparison to experiment

Research impact – 5 years

Production impact – 8 years

Renewable Electricity – Solar Energy Conversion

Computational Research Needs in Alternative & Renewable Energy

September 19-20, 2007 · Hilton Rockville, Rockville MD

Organic Polymerics & Small Molecules and Inorganic Nanostructure PVs

Challenges

While cheap, the current PV cells made of these materials suffer low efficiency and degradation:

- Exciton transport and dissociation
- Carrier transport and collection
- Electronic structure, optical property and carrier dynamics in nanosystems
- Mechanism of radiation induced degradation.

Needs from Computational Science

- •Aperiodic methods scalable for large number procedures.
- More accurate methods for excited states
- Order-N large-scale electronic structure methods for nanosystems
- •Computational methods for charge transport in complex/disordered systems
- •Better model for reactivities of photoexcited systems

Summary of Research Direction

- Charge separation and recombination process in organic/nano systems
- Excited state and exciton binding energies
- •Electronic structure of nanoparticles, the PV effects of traps and surface states, and multiple exciton generation

Potential Impact on Renewable Energy

- •Realistic model and quantitative understanding of the carrier generation and dynamics processes.
- •Rational design for more efficient and stable 3rd-generation PV

Research Impact

7 years

Production Impact

10 years

Renewable Electricity – Solar Energy Conversion

Computational Research Needs in Alternative & Renewable Energy

September 19-20, 2007 · Hilton Rockville, Rockville MD

Design And Optimization of Complex, Biomimetic and Hybrid Materials for Solar-Electric Energy Conversion

Challenges

•Lack of reliable, effective computational tools for predicting structure, excited states, and thermal/electrical transport properties of complex, biomimetic and hybrid photovoltaic and thermoelectric materials.

Needs from Computational Science

- •Efficient, long time *ab initio* based molecular methods.
- •Reliable calculations of thermal conductivity.
- •Techniques for electronic transport in complex materials defect scattering and electron phonon calculations.
- Modeling stability and formation of nanostructures and their effect on energy conversion efficiency.
- •Calculating open circuit voltage, e⁻-h⁺ separation rates, carrier trapping dynamics and exciton kinetics, photoabsorption properties, interfacial injection and electronic and thermal relaxation.

Summary of Research Direction

- •Computational predictions of photon conversion, charge and thermal transport in complex and nanostructured bulk materials and interfaces of biomimetic and hybrid systems.
- •Structural prediction and stability assessment.
- •Impact of structural defects, disorder and surface passivation in nanoscale heterogeneity.
- Development of new methodologies for electrical and thermal conductivity.

Potential Impact on Renewable Energy

- •Provide fundamental insight for the development of a new generation of photovoltaic materials.
- •Development of a direct solar thermal to electricity approach.
- •Advancing our understanding on the effect of structure and chemistry on thermal and electrical transport leading efficiency breakthroughs (tools for research use 2-3 years, materials discovery 3-5 years).

September 19-20, 2007 · Hilton Rockville, Rockville MD

Slide 7

Integrated Physics-Based Simulation and Optimization of Multi-Component Photovoltaic Systems

Challenges

- •Validated prediction, design, & optimization of photovoltaic system performance.
- •Integrated treatment of light harvesting, charge separation & carrier collection.
- •Assessment of PV device performance with breakthrough materials & architectures.

Needs from Computational Science

- •New multi-scale Maxwell solvers to handle near-field plasmonic effects out to the far-field for photon harvesting.
- •Stable algorithms for solution of the nonlinear coupled equations from physical models.
- •Algorithms for hierarchical optimization over complex and large design spaces.

Summary of Research Direction

- •Pilot device concepts: e.g. intermediate band solar cells, high internal surface area organic PV devices, light harvesting systems, multiple-exciton generation materials.
- •Developing integration approaches for physical models: Maxwell, transport, kinetics

Potential Impact on Solar Energy

- •Optimizing performance of targeted current PV designs through collaboration (4 years).
- •Extensible software for use by PV device designer engineers (6 years).
- •Realizing promise of third generation PV materials in device architectures (8 years).

September 19-20, 2007 · Hilton Rockville, Rockville MD

Processing Simulations for PV Materials Manufacturing

Challenges

- •Linking manufacturing process to material characteristics and performance for efficient solar energy conversion.
- •Simulation of novel heterogeneous manufacturing techniques and heterogeneous flowchart modeling. i.e. nanostructure deposition, large-scale self assembly, sol-gel etc...

Needs from Computational Science

- •Scalable tools for large scale Eigen-system analysis, fast order-n methods, and high-dimensional phase-space analysis
- Multi-objective optimization and inverse parameter estimation for hetergeneous processing
- Mathematically rigorous multi-physics coupling
- Multi-scale stochastic quantum dots for thermodynamics for large area self assembly

Summary of Research Direction

- •Develop robust and scalable algorithms to enable atomistic to continuum, multi-timescale, multiphysics, modeling of materials processing.
 - -Reactor scale CVD, PVD and crystal melt growth of poly/amorphous Si linked to electronic structure, MD and statistical mechanics.
 - -Nucleation/growth of grains in poly-crystalline thin films.
- •Validation of models with experimental data.

Potential Impact on Solar Energy

- Accelerate the product development cycles
- •Facilitate the transition of development processes centered on the costly "cook and look" approach to an efficient science based "know and grow" approach.
- •Facilitate laboratory-scale to fabrication-scale transition of emerging solar technology.
- •Impact will be felt in 5 − 10 years